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1. Introduction

It is our purpose here to show that two prototype models of

complementary pivot and fixed point theory and the corresponding path

following solution methods are conceptually equivalent. First, we have

the linear complementarity problem

(LCP) Mz + Nw - q

z>0 w>0 z-w=n0

where M and N are n x n, q is n x 1, and the variables z and

w are n x 1. Second, we have the piecewise linear system

(PLS) f(x) = y

where f : - Rn is piecewise linear (PL). One attempts to solve

LCP by following paths of solutions to the parameterized problem

LCP(e) Hz + Nw - Q(e)

z>0 w>0 z w-0

where Q : R+ + Rn is linear and R+ ( (0, + i), this procedure is

known as Lemke's algorithm (51.
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One attempts to solve PLS by following paths of solutions to

the parameterized problem

PLS(e) f(x) - Y(e)

where Y : R+ - Rn is linear, see [4].

By converting an LCP to a PLS and vice-versa we shall

demonstrate that paths following in one is conceptually equivalent

to paths following in the other.

The conversion from LCP to PLS was introduced in [4] and is

elementary. The conversion from PLS to LCP is the contribution of

this paper and is comparatively complicated. It was shown in

Lemke [6] that the primitive set schema of Scarf [10] could be

posed as an LCP. Although we shall not pursue the matter here,

the refining grid homotopy algorithms of [2, 3] and the restart

algorithms of Merrill [8], assuming finite subdivisions, can also

be shown equivalent to paths following in the LCP and PLS.
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2. Cells, Subdivisions, PL Maps

The remarks of this section are preliminary to the main

development. By a cell we mean a closed polyhedral convex set a,

namely,a set of form a - {x : Ax < al. By an n-cell we mean a

cell of dimension n. By a vertex, an edge, and a facet of a cell

we mean faces of the cell of dimension 0, 1, and n-l, respectively.

Two cells a and T are defined to be isomorphic if there is a

linear map h : a - T that is one-to-one and onto. In this case,

in particular, dim a - dim r and T is unbounded if and only if a

is. A cell is called pointed if it has a vertex.

A pointed cell a can be expressed in the form

{vA + uy : eA , A > 0, y > 01

where v - (vi, ..., vp). in R is an ordering of the vertices

vi of a, P PI" Pk I is an ordering of the unbounded edges

Pi of a, u - (uI , ... , uk) in R x k  has columns uj which are

the (nonzero) directions (of recession) of the unbounded edges p

of a, A - (Al, ..., A)R , y - (, .. , Xk)e Rk , and

* - (1, ... , 1) * R£ . See Figure 1. For a given x in a there may

be many pairs (X, y) > 0 with x - vA + uy and eA - 1.

3
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v3 vv 2

Figure 1

Let f : Rn be linear and defined by f(x) -Hx + h.

Then for any x - vA + uy with eA -i1, X O, and y > 0 we have

f(x) - VX + Uy where V - (f(vl1, ..., f(vi) and U - (Hui , ..., Huk).

By a subdivision .A' of a cell a we mean a finite collection of

cells T contained in a such that

1) the cells of 4' cover a,

2) faces of cells of -k are in ,

3) any two cells of . are disjoint or meet in a common face.

See Figure 2. The empty let is not regarded as a face of a cell and

we do not include the empty set in a subdivision.
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Figure 2

Given two subdivisions ./W and * of a we say that -4 is a

refinement of / if for each -r in A there is a p in Nk with

T C p.

Let nit .."' t be a finite collection of hyperplanes in Rn.

For all p = (pit ... Pt) with p, in {+, -} define the cells

Pi

5
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where n and n are the two closed halfspaces of R defined by

the hyperplane nV Let 4 be the finite collection of n-cells of

form T . By extending .JV to include the faces of cells we obtain a

subdivision of Rn and we define a subdivision of this form to be one

based on hyperplanes. By adjoining more hyperplanes to the list we

obtain a subdivision which refines the former, and in particular, by

adjoining the hyperplanes {x :x - 0} we obtain a refinement in which

each cell is pointed.

2.1 Lemma: Let ff be a subdivision of a cell. If one cell of ./k

is pointed, then all cells of ,/,( are pointed.

2.2 Le-a: Let ,M be a subidvision of Rn , then there is a

subdivision *4" of Rn based on hyperplanes which is a refinement of ./ff.

Proof: Let y1 be any facet of a cell ai of /ff and let n,

be the unique hyperplane containing y V The subdivision *4' based on

the -i is a refinement of .41. M

Let a be a cell and f : a - Rn be a function. If for some

subdivisions IV" of a, f is affine on each cell of .', then we say

that f is PL, or more precisely, that it is PL with respect to .4.

Clearly, if f is PL with respect to jV, and .f is a refinement of ,4,

then f is PL with respect to M.
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By a vertex, unbounded edge, or direction of an unbounded edge

of a subdivision IV we mean such with respect to any cell of the

subdivision. Let us assume that each cell of IV is pointed. Let

v - (Vl, ... , vI) in Rn x  and P - (pit ... Ik) be an ordering

of all vertices and unbounded edges of *- . Let u - (ul, ... , uk )

in R xk where u is the direction of pj- Let (A, y) be an

element of R9+k with (A, y) > 0 and eX - 1. Let T be a cell of

,; the pair (X, y) is defined to be T-admissible if Xi > 0 implies

vi is a vertex of T, and Yj > 0 implies that p is an unbounded edge

of r. In this case x - vX + uy is in T. The pair (A, y) is defined

to be admissible if (X, Y) is r-admissible for some T.

2.3 Lezma: For x in Rn , there is an admissible pair (X, y)

with x - vA + uy.

By a path K in Rn we mean a PL map X : R+ - Rn . A path

(A, r) in R + k is defined to be admissible if (A(8), r(e)) is

admissible for each E in R+

n

2.4 Lemma: If X is a path in R , then there is an admissible

path (A, r) in R£+ k with X - vA + ur.

Proof: Let the 0-cells of the subdivision of R+ be

0- t I , ... , th. Let sit ... , s be those e e R+ such that X(e)

7
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enters a cell of q, that is, X(si) e T but X(ts - e) j T for all

sufficiently small positive e. Let r- 0 < rI < < rm  bean

increasing sequence with (rO, ..., r } - {tI , ... t h } U {sI , ... S}

and let r -. r m+ 1. See Figure 3. For each r p - 0, .... m + 1

let Tp be the smallest cell of IV containing X(r p) and select

(XlP, p) T p-admissible with X(r p) - v)p + uyp . For p = 0, ..., m - 1

define (A(8), r(8)) - (l + p - e)( p , 7p) + (B - p)(X p + I, yp+') for

p < 8 < p + 1. For 8 > m let (A(8), r()) - (l + m - e)(xm, m)

+ ( - m)(X , + l  ). (A, r) is an admissible path and X - vA + ur.90

10 x(R+) 100

+f

rr

/-

Figure 3

Let f Rn Rn be PL with respect to ,*. Let

V - (fv ), ... , f(v )) in enx' and U -(h 1, ... I h,,) in Rnxk

where if p lies in cell a of .Aand f(x) -Hx + h for x in a,

then h j HU J

j /%
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2.5 Lemma: If x - vA + uy where (X, y) is admissible,

then f(x) - VX + Uy.

In Section 4 the theory is developed which enables us to state

"admissibility" as a "complementary condition".
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3. LCP to PLS

Since the transformation from an LCP to a PLS lends itself to

a brief description we shall recount this conversion for completeness.

In addition, this conversion gives the reader a paradigm for the PLS

to LCP conversion which is considerably more involved.

Consider the LCP for (z, w) > 0 with z * w 0 let x = z - w.

For x in Rn let = (Xl, ... , x+) and x= (x1, ... I x where
+ n n

xi x. if x i > 0 and x = - i  if x, < 0. Define h : R- R

by

h(x) = Mx+ + Nx

and it is clear that h is linear on each orthant of Rn and, hence,

is PL. Note that this subdivision is based on the hyperplanes
+

{x : xj . 0} and that each cell is pointed. Furthermore the x- and

xj are weights; that is, yj's, on directions, + ei, of unbounded edges.

3.1 Theorem: If (z, w) solves LCP, then x - z - w solves

the PLS h(x) - q. If x solves the PLS h(x) - q, then (z, w) solves

LCP where z- w x and z • w - 0. E

Recall that a path is a PL map on R+. By the statement

"(X, e) is a path solving f(x) - Y(e)", we mean that f(X(t)) - Y(e(t))

for all t in R+.

10
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3.2 Theorem: If (Z, W, e) is a path solving LCP(e), then

MX 8) with X - Z - W is a path solving the PLS(e) h(x) -Q(6).

If (X, e) is a path solving the PLS(e) h(x) - Q(8), then (Z, W, e)

is a path solving LCP(O) where (Z, W) is defined by X Z -W

and Z *W- 0.



4. PL Convex Maps, Conjugates, and Duality

In this section we develop a duality relationship between the

epigraphs of conjugate PL convex functions. This device is central

to our conversion of PLS to LCP in the next section.

Let g : in )I be a convex function that is PL with respect

to the subdivision ff of Rn . Let G be the epigraph

{(x, t) r Rn+ l : g(x) < t} of g. Clearly G is an (n+l)-cell.

Let 9 be the set of proper faces of G, that is, nonempty faces

other than G itself. If the cells of 9 are projected to Rn  then

one obtains a subdivision /' of Rn and . is a refinement of W .

Define - : by IP(T) - {(x, g(x)) x rT}. We say that *

is inclusion preserving if a C T in /' and *(a) C *(T) in W are

equivalent.

4.1 Lemma: .4 9 is one-to-one, onto, inclusion pre-

serving, and a and *(o) are isomorphic for all a in f. 0

Let g : Rn  R U {+ -} be the conjugate, see Rockafellar [91

of g, namely,

g (y) - sup(y-x - g(x))

The effective domain D - (x g (x) < + -} is bounded and g D R

is a convex PL function. Let G be the epigraph {(x, t) e Rn+l

g (x) < t} of g and let % be the set of proper faces of G

12
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We define two maps *1 and *2 that carry elements of

to elements of V , see Figures 4 and 5. By 3g(x) we mean

the set of subgradient of g at x, see [91.

Let T be an element of 9 . Note that if (z, g(z)) and

(w, g(w)) are any two points in the relative interior of r we have

ag(z) - ag(w). Further

ag(z) - n ag(x)
(x,g(x))eT

We define 'l V- by

'Y(T) - {(y, g (y)) : y e 9g(z)}

where (z, g(z)) is any point in the relative interior of T.

Recall y e 3g(z), if and only if z e 3g (y). Thus, we have

YT') - {(y, g*(y)) : z e ag*(y).

or that (T) is the face of G corresponding to the supporting

hyperplanes of g at z, therefore, 0 1 is well-defined. We call *1

inclusion reversing if a C T in V and T (a) 2 I(T) in

are equivalent. Let b be the collection of bounded cells in V

The next two theorems are closely related to the notion of dual cells.

4.2 Theorem: b : " V is one-to-one, onto, inclusion

reversing, and dim (a) n-dim a for all cells a in V.

13
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Proof: That 4l(T) is bounded follows from the boundedness

of D. If T1 and T2  are distinct faces of G, then

ag(z1 ) a 3g(z 2) for (zi , g(zi)) e ri T, and we have that

1 (T 1 1 (T 2 ). If a is a bounded proper face of G , then for
* g*y)*

some x we have a - ((y, g (y)) : xe ag Y(y -((y, g (y)) :

y e ag(x)} 1 - (T) where T is the smallest face of V containing

x. If T1
2 T2  in W , then ag(z1 ) C ag(z 2) where (zi, g(zi)) e ri Ti

so * 1 (T 1 ) C *J22(T 2). Finally, dim 3g(x) - n - dim T for (x, g(x)) in

the relative interior of T. IM

Now let us assume, in addition, that the level sets

{x : g(x) < ti of g are bounded; then G is an (n+l)-cell. Let

W and 9 be the set of unbounded cells of S and 9 , respectively.u u
Define $2 : u 4. '8u by

*2 (T- ) 1(T) + (0, R+)

*2 carries unbounded cells of G to "vertical" cells of G

,
4.3 Theorem: *: 2 u - fu is one-to-one, onto, inclusion

reversing, and dim *122(a) -n + 1 - dim a for all cells a of V u

4.4 Lemma: For T in Vu' 02 (T) D 1 (T). For T in Wu and

a in (, *2(T) D *1(a) implies 1 (T) 2i(0). For T and a in
(T)  ls

(5 ' 2( l(a) implies 02 (T) 2*2(a).

14
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Let v I i 1, ..., A be the vertices of 9 and p

J - 1, ... , k be the unbounded edges of W , Let aC(l, ... , ,

and $ C (1, .. , kI.

4.5 Corollary: The facets of G are (v ... , (v

*2 (P1)9 ... , l2(p k )  Furthermore, vertices v i  i e a and edges

P j e 0 lie in the same proper face T of G if and only if all

their corresponding facets (v(Vi) i e a and *2(PJ ) J= e meet in

the face 4I(T) of G

Proof: v e rT if and only if OI(Vi) 01 *(T). Pi C T if and

only if 2(P D 1(T).

G

i • vi v2

Figure 4a

i 7,
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G *(p1)

(T@)

Figure 4b

*1*

-~~~ Figure 5----
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5. PLS to LCP

Consider the PLS. We can assume without loss of generality

that f is PL with respect to a subdivision * that is based on

the hyperplanes nl, TIM  and that each cell is pointed.

Let v - (vl, , v ) in enxt, P - (p .. * k ), and

u = (ui , ..., uk ) in Rnxk be an ordering of all vertices of .A,

all unbounded edges of k*, and all directions uj of the unbounded

L+k
edges Pj* Let (X, y) be in R

The crux of our conversion from PLS to LCP is to construct a

cell E such that (X, y) > 0 with eA - 1 is admissible if and

only if s • (X, y) - 0 for some s in E.

For i - 1, ..., m define the "vee" maps gi :Rn R by

S i ax - bil

where ni  {x : six bi  Then nvexmap.
= " ~~~~i-1 gi saP ovxmp

Let G be the epigraph of g and N be the collection of proper

faces of G. As before * : I-+ 9 where *(T) - ((x, g(x)) : x G T}

is one-to-one, onto, Inclusion preserving, and a and *(a) are

isomorphic for all a in *A. In particular, there is a one-to-one

correspondence between the vertices and unbounded edges

(v, P) - (v1, ..., vI, Pl, . Pk ) of *Aand those (*(v), *(p))

S(*(vl), ... , *(vA), *(Pl), ... * (Pk)) of N.

Since all cells of /V4 are pointed the level sets of g are

bounded and the epigraph G of g , the conjugate of g, is an

17



* • *
(n+l)-cell. Define *1 : 1 b and V2 " u as in

,
Section 4. From corollary 4.5 we see that G has I + k facets, one

corresponding to each element of (*(v), *(p), or equivalently, (v, p).

Thus, G can be written as the intersection of the k + Z

halfspaces corresponding to its facets. In particular, we can express
G* Rn+l 1s, 2 )

G as {c R : AE + Is - a, s > 0} where the slacks s - (s , s 2

1 1 22
1 l, ..., , . s 2 of the facets are ordered to correspond

to (v, P) = NOI ..., VI , pl, "'"J Pk) .

Since G is pointed, A has rank n + 1. Thus, there are

matrices (B, b) and (C, c) such that (g, s) solves At + Is - a

with s > 0 if and only if (C, s) solves C - Bs + b, Cs - c, and

s > 0. Furthermore C can be chosen to be (k + Z - n - 1) x (k + Z)

and of rank r + L - n - 1. The set E - {s > 0 : Cs - c} is the

target of our effort as the next lemma shows.

We define the system * to be

Cs - c eX - 1

(X, Y, s) > 0 (X, Y) s- 0

5.1 Lemma: (X, y) is admissible if and only if (A, y, s)

solves * for some s. If (X, y) is a-admissible and is in

*1 *(a) then (X, y) s - 0 where s - a - A&.

Proof: Suppose (X, y) is a-admissible. Then the facets

and) corresponding to Xi > 0 and yj > 0 meet

In

- 8
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at the face *lP(a). Select P - *(a) and let s - a - A . Then
1 2
i 0 for A > 0 and si 0 for y a 0, since is in the

facets *'(lvi) and *2*(P for Xi > 0 and y • 0. Suppose

(A, Y, s) solves *. Let - Bs + b. Then the facets of G

corresponding to si a 0 contain E and, hence, they contain the

smallest face T of G containing z. Thus, *l*(vi) : T and

*2*(p ) 2 T for A > 0 and y > 0, respectively. Since A # 0,

T is bounded. Therefore, *l*(P D T according to lema 4.4.

Thus, vi and p1  are in the cell *- * (T) for A > 0 and

> 0. Finally, x = vA + uy lies in the cell -l (T).

Let V - (f(v1), ..., f(v&) and U - (hi, ..., h k) where

if Pi lies in cell a of ,P and f(x) Hx + h for x in a

then hj .HuJ.

Now we define LCP, to be the LCP

(LCP*) M(X) +Nsmq

(A, Y, s) 1 0 (A, Y) • s . 0

where (M, N, q) = ( 00 C c
V U 0 y

e 0 0 1

LCP, is a cmpositeof VA + Uy - y and the system *.

119
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5.2 Theorem: If (X, y, s) solves LCP,, then x - vX + uy

solves PLS. If x solves PLS then * has a solution (X, Y, s)

with x - vA + uy and any such (X, y, s) solves LCP,.

Proof: Since (A, y) is admissible, f(x) = VX + Uy - y and

x solves the PLS. If x solves the PLS, then x is in some cell

t of /P. So x - vX + uY where (A, y) is r-admissible and

f(x) - VA + UY - y. Select & in the cell 1 (*(T)) and let

s - a - A. Then according to lemma 5.1 (A, y, s) solves *.

Let LCP,(e) be the system LCP, with y replaced by Y(e).

In the theorem below (A, r, s) : R+ o R +k+(L+k) and n : R+ - R+.

a is defined to be monotone and onto if s < t implies a(s) < n(t)

and n(R+) - R+. 0 enters in the next theorem because the progress of

(X, 6) must be stopped periodically in order to update the compl9mentary

variable S corresponding to the subdivision. Heuristically, we

alternate between a pivot corresponding to the function and a pivot

corresponding to the subdivision (or in the language of Todd [111

between "primoid" and "duoid" exchanges). Recall, with a statement

like "CX, 6) solves f(x) - Y(e)" we mean that f(X(t)) - Y(e(t))

for all t -in R+.

5.3 Theorem: If (A , r, s, e) is a path solving LCP,(e)

then (X, 6) solves PLS(O) where X - v A + ur. If (X, 6) is a

path solving PLS(O) then there is a path (A, r, s) and a

monotone onto path A such that (A r, S, on) solves LCP,(O)

and X- vA + ur.

20
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Proof: Since ( A, r) is admissible f(X) - VA + ur - Ye,

see lemma 2.5. Now let (X,e) be a path solving PLS(e). Let

(A , r) be an admissible path with vA + ur - X, see lemma 2.4.

Let 0 e0  < .. < 8h < 8h+I W + - be a sequence in R+ and

a 0 0 a ... 0 a h  a sequence in /V such that (A, r)(e) is

a-admissible for 8i < e < 8, + 1. Define Q : R+ +R+ by

(21+1 - e i + (8 - 2i)8i+I

for 21 < 8 < 2i+l i 0, 1, 2, ... ,h -
(e) =

81 for 2i+l < 8 < 2i+2 i - 0, 1, 2, ...,h - I

0h + 6 - 2h for e > 2h

See Figure 6. Let S(21) - a - Az for some z in *i$(ai) for

i - 0, 1, ... , h. Let S(8) - S(21) for 21 < 8 < 21 + 1 for

i - 0, 1, ... , h - 1 and 8 > 2h. Thus, according to lemma 5.1

we have (A,r)(e) * S(2i) -0 for e8 < 8< i+1 and

i - O, ..., hi, or (A, P)Q(8) - 5(8) - 0 for 21< 0 < 21 + 1 for

i - 0, 1, ... , h - 1 and 8 > 2h. Let s(8) - (21 + 2 - e)S(2i + 1)

+ (e - 2i - 1)S(21 + 2) for 21 + 1 < 8 < 21 + 2 for

i - 0, ..., h - 1. Since the cells ai and ai+l meet in a common

face T, *,*a, and *1*11+1 are contained in *1*.. Thus, BS(e) + b

is in *1 *T for 21 + 1 < 8 < 21 + 2. Since (A , r)(ei+I ) is

i-admissble we have (A , )(e ) • S() - 0 for 21 + 1 < e < 21 + 2
1+1

for 1 0, ... , h -i. Or (A, r)On(e) S(e) -0 for

21
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21 +1 <0 < 21+ 2 for i -0, ... , h- 1. See Figure 7. So

(A , r)Q2* - 0 . Clearly vAO2+ urf2 -MXf and MX~ - VASO

+ ura2 YK2. Therefore, (A si, ra, s, ea is the required path.0

2A

0 31 2 3 4 5

Figure 6

A,.r) contant(A r)(6 )~

(A r()

constant i+1

S (21+2)

S(21) cntn

21 2i+1 21+2

Figure 7
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First, note that if we convert an LCP to a PLS, as in Section 3,

and then convert the resulting PLS into an LCP, as in Section 5,

we do not get back the original LCP. In particular, the dimension

has expanded enormously. The conversion from PLS to LCP is, most

likely, computationally useless, and consequently, perhaps, entirely

useless. This conversion should, it seems, be regarded with certain

suspicion; from a computational complexity perspective it is foolishness.

Nevertheless, it is quite curious that, in fact, the PLS can be restated

as an LCP in such a way that paths in PLS(O) transform to paths in

LCP(O).

Second and continuing in the main theme, Aganagic [1] observed

that RLCP can be stated on a convex PLS, namely, (CPLS) h(z) - 0 where

h : Rn - Rn is convex and PL, and h is defined by

hi(z) - min (Miz + qiP zi) for i - 1, ..., n

where Mi is the ith row of M. But we have shown that PLS with

f nonsingular somewhere can be restated as an RLCP. Thus, such a

PLS can be transformed to a CPLS.

Third, our development was somewhat encumbered because the

(X, y) coordinate system did not have unique representation. Is

there some refinement of /V that enjoys both unique representation

as well as the existence of a set E?

23



Finally, if the function h in Section 3 is nonsingular on

some orthant, then LCP can be transformed by simply rearranging the

variables and multiplying by an inverse to obtain a regular LCP,

RLCP, of the same size; that is, M and the identity I are n x n.

(RLCP) lw - Mz - q

z>0 w>0 z-w 0

In general if the map f of PLS is nonsingular on some n-cell a

where a has no more than n + 1 vertices and unbounded edges, total,

and hence, exactly n + 1, then LCP* can also be so transformed to

an RLCP. Thus, if f is nonsingular somewhere we can adjoin more

hyperplanes so that f is nonsingular on an n-simplex of ..

Therefore, if f is nonsingular somewhere the PLS can be restate4 as

an RLCP.
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